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ABSTRACT
Dry deposition is an important loss process for atmospheric particles and can be a significant part of total
deposition estimates calculated for critical loads analyses. However, algorithms used in large-scale air quality
and atmospheric chemistry models to predict particle deposition velocity as a function of particle size are
highly uncertain. Many of these algorithms, although derived from a common heritage, predict vastly
different particle deposition velocities for a given particle diameter even under identical environmental
conditions for major land use classes. Even more problematic, for vegetated landscapes (forests, in particular)
the algorithms do not agree very well with available measurements. In this work, we perform a sensitivity
study to estimate how significant the uncertainties in particle deposition algorithms may be in an air quality
model’s predictions of ground-level fine particle concentrations, particle deposition and overall total
deposition of nitrogen and sulfur. Our results suggest that fine particle concentration predictions at the
surface may vary by 5–15% depending on the choice of particle deposition velocity algorithm, while particle
dry deposition is affected to a much greater extent with differences among algorithms >200%. Moreover, if
accumulation mode particle dry deposition measurements over forests are correct, then dry particle
deposition and total elemental deposition to these landscapes may be much larger than is typically simulated
by current air quality and atmospheric chemistry models, calling into question commonly available estimates
of total deposition and their use in critical loads analyses. Since accurate predictions of atmospheric particle
concentrations and deposition are critically important for future air quality, weather and climate models and
management of pollutant deposition to sensitive ecosystems, an investment in new dry deposition
measurements in conjunction with integrated modelling efforts seems not only justified but vitally necessary
to advance and improve the treatment of particle dry deposition processes in atmospheric models.

Keywords: dry deposition, aerosols, particulate matter, air quality model, critical loads

1. Introduction

Accurate predictions of spatial and temporal distributions of
atmospheric fine particles are important for air quality
research and forecasting (Gong et al., 2015; Lee et al., 2017),
climate simulations (IPCC, 2014), and weather forecasting
(Grell and Baklanov, 2011; Saide et al., 2015; 2016). Dry

deposition to the earth’s surface, including deposition to
vegetative canopies, litter-covered surfaces, bare soils, aquatic
ecosystems and human-built structures, is an important sink
for particles in these modelling systems, especially during
periods or in locations with limited precipitation. Moreover,
dry deposition of particles is often a substantial component
of total deposition (Schwede and Lear, 2014), which is
important for assessing the impact of chemical deposition on�Corresponding author. e-mail: rick.saylor@noaa.gov
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potentially sensitive ecosystems (Driscoll et al., 2001;
Galloway et al., 2003; Pardo et al., 2011; Ellis et al., 2013). In
particular, total deposition estimates are required for the cal-
culation of critical load exceedances. A ‘critical load’ is
defined as the rate of deposition of a specified pollutant
below which harmful effects do not occur for a particular
component of an ecosystem. An exceedance occurs if the
total deposition rate of the pollutant exceeds the critical load
for the ecosystem component of interest. Europe has used
the concept of critical loads to manage emissions of selected
pollutants for many years (Hettelingh et al., 1995). Although
critical loads and exceedance calculations are not required
under U. S. law as part of the Clean Air Act, the U. S.
Environmental Protection Agency (USEPA) and other fed-
eral agencies (e.g. National Park Service, U. S. Forest
Service, and U. S. Fish and Wildlife Service) use critical load
exceedance calculations as part of larger efforts to under-
stand and manage exposure of sensitive ecosystems across
the U. S. to harmful pollutant deposition (U. S. Forest
Service, 2011).

Even though the wet deposition component of total
deposition is relatively easy to measure and interpolate
over broad regions, dry deposition of gases and particles is
notoriously difficult to measure (Hicks, 1986), leading to
the routine use of inferential methods (i.e. derived from a
combination of measured and modelled elements) for the
estimation of dry deposition rates (Brook et al., 1997).
And, because dry deposition is not spatially ergodic (Hicks,
1995), interpolation of inferentially estimated deposition
measurements (i.e. the Clean Air Status and Trends
Network – Baumgardner et al., 2002) can be problematic.
As a result, three-dimensional air quality or atmospheric
chemistry models are typically used to estimate the dry
deposition component of total deposition (Ellis et al., 2013;
Schwede and Lear, 2014; Lee et al., 2017). For example, the
USEPA, in collaboration with the National Atmospheric
Deposition Program (NADP) Total Deposition (TDEP)
Steering Committee, has created and published spatial
maps of total deposition estimates based on a combination
of measured and modelled deposition (Schwede and Lear,
2014). The dry deposition portion is computed using mod-
elled deposition velocities from the Community Multiscale
Air Quality (CMAQ) model combined with measured con-
centrations from a variety of surface networks. These total
deposition estimates are used for critical loads analyses
within the USEPA and are made publicly available for gen-
eral use and evaluation (https://www.epa.gov/castnet).
However, as we attempt to demonstrate in this article, there
is considerable uncertainty in model-derived estimates of
total deposition, in particular because there is large uncer-
tainty in modelled dry deposition of atmospheric particles.
As a result, we argue that current estimates of total depos-
ition are highly uncertain, potentially contain significant

underestimates of the deposition of some species to some
land use types, and should only be used with caution.
Moreover, we further argue that the state of scientific
understanding of atmospheric particle deposition is signifi-
cantly lacking and should be the focus of new, focussed
field measurement and integrated modelling studies.

In the sections that follow, we first examine differences
in several algorithms commonly used in current air qual-
ity and atmospheric chemistry models to predict particle
deposition and show how well (or not) these predictions
compare with available measurements. Then, as a sensi-
tivity test we implement these algorithms into a common
air quality modelling system to see how differences in the
particle deposition algorithms affect the model’s overall
predictions of surface fine particle concentrations and
deposition (dry, wet and total). Further, we implement
and test an empirically based particle deposition algo-
rithm that better matches deposition velocity measure-
ments made over forests to gauge how significant known
model-measurement discrepancies may be to current
model-derived estimates of total deposition. Finally, we
discuss the potential importance of our results, especially
in light of additional uncertainties in modelling dry
deposition processes that have been recognised over the
years but which have not been adequately accounted for
in air quality and atmospheric chemistry models to date.

2. Models of atmospheric particle deposition

In recent rigorous comparisons of numerous state-of-the-
science air quality/atmospheric chemistry models (Solazzo
et al., 2012; Im et al., 2015), dry deposition of particles
and precursor species was identified as one of the causes
of differences in particle concentration and deposition
predictions between the models. Of course, in those stud-
ies it was difficult to pinpoint the reasons for the
observed differences among models, since numerous dif-
ferences in model components and inputs could have con-
tributed to the variation in results. One possible reason
for the differences could be the algorithms that are used
in the models to predict particle deposition velocity (since
particle removal is the product of both surface concentra-
tion and deposition velocity). The algorithms describing
particle deposition velocity as a function of particle size
in almost all current state-of-the-science air quality mod-
elling systems are descended from the seminal theoretical
work of Slinn (1982), Slinn and Slinn (1980) and Slinn
(1977). For particle deposition to vegetative canopies,
Slinn (1982) formulated the deposition velocity as

Vd ¼ Vs þ 1
Ra þ Rs

(1)

where, VS is the gravitational settling velocity of the
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particle; Ra is the aerodynamic resistance above the sur-
face or vegetative canopy; and, Rs is the surface (or can-
opy) resistance. The gravitational settling velocity is
calculated according to Stokes’ Law via

Vs ¼
qpD

2
pgCc

18g
(2)

where, qp is the density of the particle; Dp is the diameter
of the particle; g is gravitational acceleration; Cc is the
Cunningham correction factor for small particles; and, g
is the dynamic viscosity of air.

The above-canopy aerodynamic resistance, Ra, can be
determined via a variety of parameterisations (Liu et al.,
2007) but typically is calculated as a function of the can-
opy roughness length and local atmospheric stability. In
Slinn (1982), the surface (or canopy) resistance is calcu-
lated as a function of the mean wind speed at the top of
the vegetative canopy, uh, the friction velocity, u�, an
overall canopy collection efficiency, e, and a parameter,
c, which characterises the shape of the mean wind profile
within the canopy

Rs ¼ uh
u2�

1ffiffi
e

p 1þ ffiffi
e

p
tanhc

ffiffi
e

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ tanhc

ffiffi
e

pp
( )

(3)

Slinn (1982) further assumed that the overall canopy col-
lection efficiency was an additive function of separate collec-
tion efficiencies resulting from the individual physical
processes of Brownian diffusion (EB), interception (EIN), and
impaction (EIM), all modulated by a reduction in collection
(R) due to ‘rebound’ of particles back into the atmosphere

e ¼ EB þ EIN þ EIMð ÞR (4)

Table 1 presents the functions recommended by Slinn
(1982) for calculation of the collection efficiencies and
particle rebound. Over the years, other researchers have
borrowed the general framework of Slinn (1982), but
introduced various modifications and alternative forms
for the formulation of Rs and how the individual collec-
tion efficiencies are determined.

The algorithm described by Zhang et al. (2001) is used
in GEM-MACH, Environment and Climate Change
Canada’s operational air quality forecast model (Gong
et al., 2015), as one of the default options in the
Comprehensive Air Quality Model with Extensions
(CAMx; Environ International Corporation, 2012), and
also in the GEOS-Chem global model (Pye et al., 2009).
The Zhang et al. (2001) algorithm, by neglecting within
canopy variation of the wind profile (i.e. c ¼ 0), arrives
at a surface resistance of the form

Rs ¼ 1
a0u� EB þ EIN þ EIMð ÞR (5)

which is equivalent to Equation (3) and (4) with c ¼ 0 and

a0 ¼ u�=uh. Zhang et al. (2001) specifies a constant value
of a0 ¼ 3 for all land use types, although no explanation of
this choice is provided. Zhang et al. (2001) also introduced
alternative forms for the collection efficiency parameterisa-
tions as shown in Table 1, some of which produce efficien-
cies quite different from the Slinn (1982) choices.

In Pleim and Ran (2011), the authors describe the par-
ticle deposition algorithm used in the Community
Multiscale Air Quality (CMAQ) model (Byun and
Schere, 2006), which also uses the Slinn (1982) framework
as a starting point. As in Zhang et al. (2001), Pleim and
Ran (2011) neglect the effect of within canopy wind vari-
ation and define the surface resistance as

Rs ¼ 1
Ff u� EB þ EIN þ EIMð Þ (6)

with,

Ff ¼ 1þ 0:24
w2
�

u2�
(7)

in which w� is the convective velocity scale. The term Ff

is an empirical correction factor, first suggested by
Wesely et al. (1985), to account for increased deposition
in convective conditions. Pleim and Ran (2011) also
employed alternative collection efficiency parameterisa-
tions (Table 1), with the notable choice of neglecting the
interception collection efficiency (i.e. using EIN ¼ 0),
ostensibly because the determination of useful characteris-
tic lengths for vegetation microstructures over a typical
model grid cell is troublesome.

Petroff and Zhang (2010) developed an even more
complex algorithm based on simplification of a compre-
hensive one-dimensional aerosol transport model (Petroff
et al., 2008a, 2008b, 2009), yet still is loosely derivative
from Slinn (1982). In their algorithm, the surface depos-
ition velocity (i.e. Vs ¼ 1=Rs) is calculated via

Vs ¼ Egu�
1þ Q

Qg
� a

2

h i
tanh gð Þ

g

1þ Qg þ a
2

� � tanh gð Þ
g

(8a)

with,

Q ¼ LAI ETh
lmp

(8b)

Qg ¼ Egh
lmp

(8c)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4þQ

q
(8d)

ET ¼ uh
u�

EB þ EIN þ EIMð Þ þ EIT (8e)

where, LAI is the two-sided leaf area index, h is the can-
opy height, lmp is particle mixing length, a is the aero-
dynamic extinction coefficient of the canopy, uh is the
mean wind speed at canopy top, Eg is a collection
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efficiency for deposition to the ground, and EIT is a col-
lection efficiency for turbulent impaction. Table 1
presents the functions used by Petroff and Zhang (2010)
to determine EB;EIN ;EIM and EIT .

Figure 1 illustrates differences in the Slinn (1982), Zhang
et al. (2001), Pleim and Ran (2011), and Petroff and Zhang
(2010) predictions of particle deposition velocity as a func-
tion of particle size and land use category (LUC). All of the
models predict a ‘well’ in deposition velocity in the accumu-
lation mode (i.e. the 0.1–2 mm diameter size range) for all
land use types, but the particle diameter at which the min-
imum occurs differs substantially between the models. The
minimum in Vd occurs because none of the collection

efficiencies are very efficient in this size range, but different
expressions for the various efficiencies used by the algo-
rithms result in differences in the diameter at which the
minimum occurs (see Fig. S-1 in the Supplement). The
Zhang et al. (2001) algorithm predicts a well minimum at a
larger diameter (at 2–3 mm) than the other schemes, while
the Petroff and Zhang (2010) algorithm predicts a well min-
imum at the smallest diameter, except for the urban land
use type. Pleim and Ran (2011) directly predict little differ-
ence in deposition velocity between land use types because
the particle interception efficiency, EIN , is neglected.
However, as seen in Fig. 1, the algorithm is very sensitive to
the value of the convective velocity scale, w� (Deardorff

Table 1. Comparison of Particle Collection Efficiencies for Vegetation Canopies from Selected Algorithms.

Reference EB EIN EIM R Other

Slinn (1982)
cv
cd

Sc�2=3

cv
cd

�F
Dp

Dp þ �A

( )
þ ð1� �F Þ Dp

Dp þA
_

8<
:

9=
;

2
64

3
75

St2

1þ St2
e�b

ffiffiffiffi
St

p

Zhang et al. (2001) Sc�c 1
2

Dp

A

� �2
St

aþ St

� �2

e�
ffiffiffiffi
St

p

Pleim and Ran (2011) Sc�2=3 0
ðsþÞ2

400þ ðsþÞ2 1

Petroff and Zhang (2010) cBSc
�2=3Re�1=2

h cIN
Dp

L
evergreen

cIN
Dp

L
2þ ln

4L
Dp

" #
broadleaf

cIM
St

bIM þ St

� �2

1
EIT ¼
0:0025cIT sþ sþ<20

cIT sþ � 20

A ¼ a characteristic length scale for canopy element interception in Zhang et al. (2001) (m).
�A;A

_ ¼ a characteristic width of the “small” and “large” interception collectors, respectively in Slinn (1982) (m).
b ¼ numerical constant in rebound expression – Slinn (1982) recommended ¼ 2.
cB ¼ LUC-specific coefficient in Brownian collection efficiency expression of Petroff and Zhang (2010).
cIM ¼ LUC-specific coefficient in impaction collection efficiency expression of Petroff and Zhang (2010).
cIN ¼ LUC-specific coefficient in interception collection efficiency expression of Petroff and Zhang (2010).
cIT ¼ LUC-specific coefficient in turbulent impaction collection efficiency expression of Petroff and Zhang (2010).
cv
cd
¼ the ratio of the viscous drag coefficient to the total drag coefficient in Slinn (1982).

DB ¼ the Brownian diffusivity of the particle (m2 s�1).
Dp ¼ particle diameter (m).
EB ¼ particle collection efficiency for Brownian diffusion.
EIN ¼ particle collection efficiency for interception by canopy elements.
EIM ¼ particle collection efficiency for impaction onto canopy elements.
EIT ¼ particle collection efficiency for turbulent impaction.
�F ¼ the fraction of total interception collection occurring on ‘small’ collectors (i.e. vegetation hairs) in the canopy in Slinn (1982).
L ¼ LUC-specific characteristic length in Petroff and Zhang (2010) (m).
R ¼ reduction in collection caused by particle rebound.
Reh ¼ the Reynolds number at the top of the canopy ¼ uhL=m.
Sc ¼ the Schmidt number ¼ v=DB.
St ¼ the Stokes number ¼ Vsu�=gl, where l ¼ �A, A

_

, A or L, depending on the particular algorithm being used.
a ¼ LUC-specific parameter used in the impaction collection efficiency expression of Zhang et al. (2001).
bIM ¼ LUC-specific parameter used in the impaction collection efficiency expression of Petroff and Zhang (2010).
c ¼ LUC-specific exponent used in the Brownian collection efficiency expression of Zhang et al. (2001).
v ¼ the kinematic viscosity of air (m2 s�1).
sþ ¼ non-dimensional particle relaxation time used in Pleim and Ran (2011) and Petroff and Zhang (2010); ¼ StRe�,
where Re�¼ u�l=m.
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1970), which can vary significantly as a function of the
surface roughness, z0, defined for each land use type. The
Petroff and Zhang (2010) algorithm produces the largest
differences in predicted deposition velocities among land
use types, with urban Vd’s much smaller than produced by
the other schemes. For the forest land use types, both
Zhang et al. (2001) and Petroff and Zhang (2010) produce
higher deposition velocities in the 0.1–2 mm diameter range
than Slinn (1982) and Pleim and Ran (2011).

The most striking observation about Fig. 1, however,
are the enormous differences in deposition velocities pre-
dicted by the various algorithms for a given particle
diameter and land use type. For a 0.1mm diameter par-
ticle depositing to a deciduous broadleaf canopy, the
Zhang et al. (2001) algorithm predicts a Vd of 0.6 cm s�1,
whereas the Petroff and Zhang (2010) algorithm predicts
a Vd of 0.023 cm s�1. For a 1 mm diameter particle over a
needleleaf evergreen canopy, Petroff and Zhang (2010)
predicts Vd ¼ 0.27 cm s�1, while Pleim and Ran (2011)
with a w� value of zero predicts Vd ¼ 0.011 cm s�1.

Given the common heritage of these algorithms in the
formulation of Slinn (1982), the large variation in results
between specific formulations is somewhat surprising, but
this wide range of behaviour likely helps to explain the
results observed by Solazzo et al. (2012) and Im et al.
(2015) in their comparisons of current modelling systems.

Several studies have noted over recent years that the
algorithms describing the size-dependent dry deposition
of atmospheric particles over vegetative canopies do not
agree very well with measurements, especially in the accu-
mulation mode, and particularly for canopies with high
surface roughness (Zhang and Vet, 2006; Petroff et al.,
2008a; Pryor et al., 2008a). Recently, a review by Hicks
et al. (2016) surveyed the historical development of both
the algorithms and measurements of this phenomenon,
noting that measurements as far back as 1977 suggested a
pronounced difference between measurements and model-
derived expectations. Pryor et al. (2008a) provided a thor-
ough summary of potential explanations for the discrep-
ancies, ranging from observational errors, to chemical

Fig. 1. Comparison of particle dry deposition velocity, Vd (cm s�1), as a function of particle diameter, Dp (mm), for various algorithms
and land use types (u� ¼ 60 cm/s for all algorithms and LUCs).
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flux divergences, faulty model assumptions, or the neglect
of important deposition processes (e.g. turbophoresis, ther-
mophoresis, etc.); however, the model-measurement discrep-
ancies remain and have not been definitively settled.

In Figs. 2–6, the algorithms described above are com-
pared to available measurements for five distinct land use
types. One immediate observation is that, except for ever-
green needleleaf forests, there are only very limited meas-
urements of particle deposition velocity as a function of
particle diameter (Vd(Dp)). The large scatter in measure-
ments across all land use types may simply be a reflection
of the difficulty of making these kinds of measurements,
but also may suggest that other unidentified processes or
variables may be affecting particle deposition (e.g. leaf
area density distribution as a function of canopy depth,
see Katul et al., 2011). Also, the large scatter of data for
forest and grassland surface types may possibly account
for the wide divergence in model predictions of Vd(Dp),
simply depending on which datasets were used in the for-
mulation of a particular algorithm.

For smooth surfaces, such as water or snow/ice (Figs.
5 and 6), the measurements generally provide some cre-
dence to the idea of a minimum in deposition velocity for
particles in the accumulation mode, as predicted by most
Vd(Dp) algorithms. However, for vegetated surfaces the

picture is quite different. For grassland surfaces (Fig. 4),
it would be difficult to argue that the measurements pro-
vide any evidence for an accumulation mode minimum.
The large scatter of measurements in this region also
makes it difficult to favour one algorithm over another,
although Zhang et al. (2001) and Pleim and Ran (2011)
seem to better fit the data over a broader range of par-
ticle diameters.

For forested surfaces (Figs. 2 and 3), the data clearly
indicate that there is no deposition velocity minimum in
the 0.2–2.0mm particle diameter range. In fact, the data
suggest that there may be a minimum somewhere in the
0.1–0.2mm range, with a sharp rise in Vd between 0.2 and
0.3mm, rather than the gradual decrease that is predicted
by most of the Vd(Dp) algorithms. This is consistent
across many of the measurement data sets (Gallagher
et al., 1997; Gronholm et al., 2007; Vong et al., 2010;
Gordon et al., 2011; Mammarella et al., 2011), but not
all (e.g. Buzorius et al., 2000). In any case, none of the
models reproduces the measurements in the 0.2–2.0 mm
size range for forest surface types, underpredicting Vd by
up to two orders of magnitude. This is potentially signifi-
cant since much of the mass of fine particles is often con-
tained in exactly this size range. As a result, air quality
or atmospheric chemistry models that use a Vd(Dp)

Fig. 2. Atmospheric particle deposition velocities (cm s�1) predicted by the four algorithms compared with measurements as a
function of particle diameter (mm) for a deciduous broadleaf forest. Error bars represent an estimate of uncertainty either as presented
by the respective authors or as derived from the published data. (u� ¼ 40 cm s�1 for all algorithms.).
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algorithm similar to the ones shown here will significantly
underestimate particle deposition to forested land surface
types. Results for grassland surface types suggest that it
may be possible that a similar underestimate might occur
for all vegetated canopies; however, the sparsity and scat-
ter of the data makes such a statement only speculation.

Given that commonly used algorithms of Vd(Dp)
exhibit such wide variation in Vd predictions across land
use types and that none of the algorithms do a particu-
larly good job of reproducing available measurements,
especially for forest land use types in the accumulation
mode, then reasonable questions arise: How important
are these uncertainties for air quality model predictions
of particle concentration distributions and particle depos-
ition and how might these uncertainties impact total
deposition estimates? A series of air quality model simu-
lations, described and presented in the next section, were
performed to begin to answer these questions.

3. Particle deposition sensitivity simulations

3.1. Air quality model and domain

Air quality model simulations were constructed to evalu-
ate how the choice of algorithm for particle dry

deposition may affect an air quality model’s predictions
of PM2.5 (mass concentration of particles with diameters
less than 2.5 micrometers) concentrations and deposition.
For these simulations, version 6.0 of the Comprehensive
Air Quality Model with Extensions (CAMx; Environ
International Corporation, 2012) was selected. CAMx
was chosen for this study because its structure allows for
easy modification of the particle dry deposition algorithm
and because it has the option to simulate aerosols (and
hence particle deposition) using a sectional approach.
CAMx was configured to use the ACM2 (Pleim, 2007)
diffusion scheme, the PPM advection solver and the EBI
chemistry solver using the Carbon Bond Mechanism ver-
sion 5 (Sarwar et al., 2008). The Carnegie Mellon
University (CMU) sectional aerosol module was
employed with eight size bins (with boundaries of 0.025,
0.054, 0.12, 0.25, 0.54, 1.2, 2.5, 5.4, 11.6 mm) to simulate
aerosol processes. The CMU aerosol module as imple-
mented in CAMx uses the Multi-component Aerosol
Dynamics Model (MADM; Pilinis et al., 2000) to model
condensation, evaporation, coagulation and nucleation
processes. Inorganic aerosol thermodynamics are treated
using ISORROPIA (Nenes et al., 1998, 1999) and second-
ary organic aerosol thermodynamics are modelled using

Fig. 3. Atmospheric particle deposition velocities (cm s�1) predicted by the four algorithms compared with measurements as a
function of particle diameter (mm) for a evergreen needleleaf forest. Error bars represent an estimate of uncertainty either as presented
by the respective authors or as derived from the published data. (u� ¼ 40 cm s�1 for all algorithms.).
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the methodology of Koo et al. (2003) and Morris et al.
(2005). Deposition velocities were calculated separately
for each size bin using the mean bin diameter. Particle
dry deposition for each of the algorithms tested was thus
a function of particle size and allowed for better compari-
sons of the differences in the behaviour of the algorithms
across the full range of modelled particle diameter.

The Southeast U. S. domain shown in Fig. 7 was
selected for the study primarily for two reasons: (i) the
Southeast is extensively covered by forest (41% of grid
cells in the domain are forest land use type, displayed as
shades of green in the figure); and, (ii) the existence of a
broad range of air quality measurement data sets in the
region, including data from the Southern Atmosphere
Study (https://www.eol.ucar.edu/field_projects/sas) which
took place during the summer of 2013. Simulations were
performed over the domain at 4-km horizontal resolution
for the 18-day period of June 11–28, 2013, where the first
3 days were used as a spin-up period and results analysed
for the 15-day period of June 14–28. Boundary conditions
over the period were derived from 12-km CONUS-
domain simulations of the NOAA National Weather
Service National Air Quality Forecasting Capability
(NAQFC; Lee et al., 2017). Meteorological data for both

domains were generated using the Non-Hydrostatic
Multiscale Model on the B-grid (NMMB), with the 4-km
subdomain nested within the 12-km CONUS domain.

Emission inputs for the simulations (for both the 12-
km CONUS domain and the 4-km Southeast domain)
were processed depending on the sensitivity of the sources
to meteorology (Tong et al., 2015). For ‘static’ emission
sources not strongly influenced by meteorological condi-
tions, including mobile and area sources, the USEPA
2005 National Emission Inventories (NEIs) were used as
the baseline emission data set. Mobile emissions and off-
road engine emissions for nitrogen oxides (NOx) were
adjusted using the Cross-State Air Pollution Rule
(CSAPR) projection factors (Pan et al., 2014), to reflect
changes in emissions from the inventory year (2005) to
the simulation period (Tong et al., 2015). For point
source emission, the NEI05v1 data are used as the base
year for Electricity Generation Units (EGUs) and non-
EGU point sources. NOx and sulfur dioxide (SO2) emis-
sions from EGU sources were upgraded with 2013
Continuous Emission Monitoring (CEM) data. The
adjusted inventories were processed using the Sparse
Matrix Operator Kernel Emissions (SMOKE) modelling
system (Houyoux and Vukovich, 1999) to represent

Fig. 4. Atmospheric particle deposition velocities (cm s�1) predicted by the four algorithms compared with measurements as a
function of particle diameter (mm) for a grass covered surface. Error bars represent an estimate of uncertainty either as presented by the
respective authors or as derived from the published data. (u� ¼ 40 cm s�1 for all algorithms.).
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monthly, weekly, diurnal and holiday/non-holiday varia-
tions that are specific for each year. For wildfire smoke
emissions, fire points and smoke plume locations were
identified by the NOAA Hazard Mapping System (HMS)
using satellite retrieval and human analysis (Ruminski
et al., 2006). The HMS fire smoke products were proc-
essed through the U.S. Forest Service BlueSky (version
3.1) framework modelling system (Larkin et al., 2009;
O’Neill et al., 2009) to produce near real-time wildfire
smoke emissions for the simulations.

3.2. Simulation descriptions

In CAMx, the Zhang et al. (2001) algorithm is one of the
selectable options for particle dry deposition. In this
work, we implemented the Pleim and Ran (2011) and
Petroff and Zhang (2010) algorithms as additional
options for particle dry deposition within CAMx. An
empirically based algorithm was also implemented in
CAMx to explore how total deposition predictions of cur-
rent air quality models may be affected if deposition vel-
ocity measurements over forests are correct. The
empirical algorithm was created as a derivative of the
Zhang et al. (2001) scheme by forcing the Vd curve as a

function of particle diameter for all forest land use types
occurring within the domain (evergreen needle, evergreen
broadleaf, deciduous broadleaf, and mixed) to more
closely represent the measurement data as shown in Fig.
8, in particular matching the data’s lack of a minimum in
the accumulation mode above 0.2mm. This was accom-
plished by including an additional collection efficiency,
Eunk for an unknown process into the expression for the
surface resistance

Rs ¼ 1
a0u� EB þ EIN þ EIM þ Eunkð Þ : (9)

The unknown process collection efficiency was con-
structed as a logistic equation (see Fig. S-1 and the equa-
tion in the Supplement) with particle size as the
independent variable so that the resulting Vd(Dp) more
closely represented the data as shown in Fig. 8. Using
this approach, variation of the other collection efficiencies
with respect to input variables (e.g. friction velocity, see
Fig. S-2 in the Supplement) remains similar to the ori-
ginal Zhang et al. (2001) algorithm. The unknown collec-
tion efficiency was only included in the Vd calculation for
grid cells with forested land use types, leaving deposition
velocities for grid cells of all other land use types calcu-
lated as in the original Zhang et al. (2001) algorithm.

Fig. 5. Atmospheric particle deposition velocities (cm s�1) predicted by the four algorithms compared with measurements as a
function of particle diameter (mm) for a water surface. Error bars represent an estimate of uncertainty either as presented by the
respective authors or as derived from the published data. (u� ¼ 20 cm s�1 for all algorithms.).
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Four simulations were performed in this study for the
southeast domain of Fig. 7. The base simulation used the
CAMx modelling system with the particle dry deposition
scheme of Zhang et al. (2001) selected. Each of the three
other simulations used alternate particle dry deposition
algorithms: (i) Pleim and Ran (2011); (ii) Petroff and
Zhang (2010); and, (iii) the empirical algorithm described
above. All other model settings and inputs to the
simulations were identical, including boundary conditions
(from the CONUS 12 km simulation), emissions and
meteorology.

3.3. Results

Mean surface concentrations of PM2.5 over the last
15 days of the simulation (June 14–28, 2013) are shown in
Fig. 9 for all four simulations (see also Fig. S-3 in
Supplement). There are discernable differences in surface
concentrations across the simulations, although in some
cases the differences are relatively small. Surface concen-
tration differences between the Pleim and Ran (2011) and
base Zhang et al. (2001) simulations range from �2 to
þ6%, with a domain mean difference of þ3.3%.
Differences between Petroff and Zhang (2010) and the
base run range from þ1 to 6%, with a domain mean

difference of þ5.9%. For the empirical simulation, surface
concentration differences between it and the base run
range from 0 to �10%, with a domain mean difference of
�6.9%. Differences in surface PM2.5 concentrations
between the Petroff and Zhang simulation and the empir-
ical are opposite in sign with respect to the base run and
lie in the range of 8–15%. Hourly modelled surface con-
centrations at individual grid cells over the length of the
simulation (see Fig. S-3) have maximum differences from
the base run on the order of 5–10%.

On the other hand, differences with respect to the base
simulation in total PM2.5 cumulative dry deposition over
June 14–28 are much more substantial, as seen in Fig. 10
(see also Fig. S-4). The Pleim and Ran (2011) algorithm
produced both increases and decreases in PM2.5dry
deposition as compared with the base Zhang et al. (2001)
algorithm, ranging from an increase of over 200% to a
decrease of nearly 90%, with increases primarily over for-
ested grid cells. Because the Petroff and Zhang (2010)
algorithm generally produces smaller particle dry depos-
ition velocities in the accumulation mode, total PM2.5dry
deposition decreases across most of the domain for its
simulation as compared to the base run. The empirical
algorithm, which attempts to better represent actual
deposition velocity measurements over forests, produces

Fig. 6. Atmospheric particle deposition velocities (cm s�1) predicted by the four algorithms compared with measurements as a
function of particle diameter (mm) for a snow or ice covered surface. Error bars represent an estimate of uncertainty either as presented
by the respective authors or as derived from the published data. (u� ¼ 20 cm s�1 for all algorithms.).
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PM2.5dry deposition increases of 120–230% to forest-
dominated grid cells. In terms of cumulative PM2.5dry
deposition, Zhang et al. produces a domain mean of 81.
6 g ha�1, Pleim and Ran produces a nearly identical 80.
6 g ha�1 (�1.2%), Petroff and Zhang produces only 22.5 g

ha�1 (�72.4%), and the empirical algorithm produces
142.2 g ha�1 (þ74.3%). Averaged over only forested grid
cells, the empirical algorithm produces more than 2.4
times the PM2.5dry deposition (251.6 g ha�1 versus 103.
6 g ha�1) than does the Zhang et al. scheme for those

Fig. 7. Computational domain consisting of the Southeastern domain (4 km horizontal resolution) nested within the CONUS domain
(12km horizontal resolution) used in the NOAA NWS National Air Quality Forecast Capability.
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cells. Qualitatively similar results are obtained for the dry
deposition of PM2.5 species components sulfate (Fig. 11),
nitrate (Fig. 12) and ammonium (Fig. 13).

During the simulation period over the southeast U. S., total
(wetþ dry) PM2.5 deposition was dominated by wet depos-
ition (see Tables 2 and 3). In the base Zhang et al. simulation,
PM2.5dry deposition accounted for only 14.6 % of total PM2.5

deposition over the domain, with a similar fraction and over-
all total deposited in the Pleim and Ran simulation. In the
Petroff and Zhang simulation, dry deposition accounted for
only 4.4% of total PM2.5 deposition, and total particle depos-
ition decreased by 8.0% as compared to the base Zhang et al.
simulation. For the empirical simulation, mean dry deposition
over the domain increased to almost 24% of the total PM2.5

deposition, and total particle deposition increased by 7.1%. If
only forested grid cells are considered (Table 3), the results are
qualitatively similar but with a larger overall impact. In par-
ticular, the empirical simulation produced a 20% increase in
total PM2.5 deposition to forested grid cells with one-third of
the total deposited as dry deposition.

Figures 14 and 15 present the per cent increase in total
deposition between the empirical simulation and the base
Zhang et al. simulation for sulfur and nitrogen, respect-
ively. As expected, the largest increases in total deposition

occur over forested grid cells that received smaller wet
deposition amounts. Because a larger fraction of sulfur
deposition occurs in the particle phase than does nitro-
gen, larger increases are observed in total sulfur depos-
ition (a maximum of 161% and domain mean of 7.5%) as
compared to total nitrogen deposition (a maximum of
13% and domain mean of 1.3%). Since the southeast U.
S. typically experiences frequent summer afternoon and
evening rainfall, this result may underestimate the uncer-
tainty in total deposition caused by the model-measure-
ment discrepancy of particle deposition to forests. In
particular, the western U. S. is normally far drier than
the southeast and dry deposition of both sulfur and nitro-
gen accounts for a much larger fraction of total depos-
ition there (NADP, 2016).

Unfortunately, there are no model-independent meas-
urements of particle deposition available with which to
evaluate the results obtained here. Estimates of particle
dry deposition from the USEPA’s Clean Air Status and
Trends Network (CASTNET) are calculated using the
method of Bowker et al. (2011) using deposition velocities
calculated by the Multi-Layer Model of Meyers et al.
(1998). The resulting inferential deposition estimates,
which are combinations of model-generated deposition

Fig. 8. Example of the empirical representation of Vd (cm s�1) as a function of particle diameter Dp (mm), using the algorithm of
Zhang et al. (2001) but including an additional efficiency for an ‘unknown’ process, thereby forcing the Vd(Dp) function to more closely
represent data obtained over forests (u� ¼ 60 cm s�1).
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Fig. 9. PM2.5 mean surface concentration (mg m�3) for June 14–28, 2013, with PM2.5dry deposition algorithms of Zhang et al. (2001),
Pleim and Ran (2011), Petroff and Zhang (2010), and the empirical algorithm of this work.

Fig. 10. Cumulative PM2.5dry deposition (g ha�1) (June 14–28, 2013) for the base Zhang et al. (2001) simulation and percent
differences from the base for each of the tested particle deposition algorithms.
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Fig. 11. Cumulative PM2.5 SO4
2� dry deposition (g ha�1) (June 14–28, 2013) for the base Zhang et al. (2001) simulation and percent

differences from the base for each of the tested particle deposition algorithms.

Fig. 12. Cumulative PM2.5 NO3
� dry deposition (g ha�1) (June 14–28, 2013) for the base Zhang et al. (2001) simulation and percent

differences from the base for each of the tested particle deposition algorithms.
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velocities and 7-day average PM2.5 concentrations, are
not ideal for comparison to 3D model predicted dry
deposition. Nevertheless, Table 4 (and Figs. S-26 through

S-28) presents mean biases and normalised mean biases
for model predicted particle deposition (g ha�1) vs.
CASTNET estimated deposition for SO4

2�, NO3
� and

Fig. 13. Cumulative PM2.5 NH4
þ dry deposition (g ha�1) (June 14–28, 2013) for the base Zhang et al. (2001) simulation and percent

differences from the base for each of the tested particle deposition algorithms.

Table 2. Domain mean wet, dry and total PM2.5 deposition (g ha�1) for each
simulation; for Wet and Dry depositions, values in parentheses are the fractions of
each deposition type in the Total; for Total deposition, values in parentheses are
the percentage differences in total PM2.5 deposition with respect to the base
Zhang et al. simulation.

Simulation Wet (g/ha) Dry (g/ha) Total (g/ha)

Zhang et al. (2001) 477.7 (85.4%) 81.6 (14.6%) 559.3
Pleim and Ran (2011) 477.5 (85.6%) 80.6 (14.4%) 558.1 (�0.2%)
Petroff and Zhang (2010) 492.1 (95.6%) 22.5 (4.4%) 514.6 (�8.0%)
Empirical 459.8 (76.4%) 142.2 (23.6%) 602.0 (þ7.1%)

Table 3. Mean wet, dry and total PM2.5 deposition (g ha�1) for forested grid cells
only for each simulation; for Wet and Dry depositions, values in parentheses are
the fractions of each deposition type in the Total; for Total deposition, values in
parentheses are the percentage differences in total PM2.5 deposition with respect to
the base Zhang et al. simulation.

Simulation Wet (g/ha) Dry (g/ha) Total (g/ha)

Zhang et al. (2001) 526.3 (83.6%) 103.6 (16.4%) 629.9
Pleim and Ran (2011) 524.1 (78.8%) 140.8 (21.2%) 664.9 (þ5.6%)
Petroff and Zhang (2010) 541.9 (95.0%) 28.3 (5.0%) 570.2 (�9.5%)
Empirical 503.9 (66.7%) 251.6 (33.3%) 755.5 (þ20%)
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Fig. 14. Per cent increase in total sulfur deposition (all forms of sulfur in both dry and wet deposition) between the empirical
simulation and the base Zhang et al. simulation. Maximum increase ¼ 160.6%; Domain mean increase ¼ 7.5%.

Fig. 15. Percent increase in total nitrogen deposition (all forms of nitrogen in both dry and wet deposition) between the empirical
simulation and the base Zhang et al. simulation. Maximum increase ¼ 13.0%; Domain mean increase ¼ 1.3%.
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NH4
þ, while Table 5 (and Figs. S-29 through S-31)

presents similar statistics for PM2.5 concentrations (mg
m�3) of these species from CASTNET. Although the
model vs. measurement comparisons of species surface
concentrations suggest decreased biases when using the
Empirical algorithm as compared to the Zhang et al.
(2001) algorithm, a similar conclusion cannot be made
for the model-dependent dry deposition comparisons.

4. Conclusions, implications and
recommendations

Particle deposition algorithms used in most current air qual-
ity and atmospheric chemistry models have their origin in
the work of Slinn (1982), Slinn and Slinn (1980) and Slinn
(1977), which were based on measurements (a large fraction
of which were wind-tunnel based) made in the 1970–80’s and
earlier with technology available at that time. Nevertheless,
as was shown,Vd(Dp) algorithms derived from the Slinn for-
mulation can have substantial variation in predictions for
identical environmental conditions and land use types.
Moreover, comparisons of algorithm predictions of Vd gen-
erally do not agree very well with available measurements,
especially for forested surface types, where the algorithms
underpredict Vd by up to two orders of magnitude for par-
ticles in the diameter range 0.2–2.0mm.

In this work, we have conducted a sensitivity study to
estimate how uncertainties in particle deposition algo-
rithms, as expressed by variations in Vd predictions
among different commonly used algorithms and by

model-measurement discrepancies, may impact surface
PM2.5 concentration distributions, total particle depos-
ition and total (wetþ dry) deposition. In this study,
CAMx air quality model simulations were performed
using three different but commonly used Vd(Dp) algo-
rithms and an additional simulation was performed using
an empirically based Vd(Dp) algorithm which better
matches Vd measurements made over forested landscapes.

Surface PM2.5 concentrations in the simulations were
seen to differ by a few per cent between the algorithms,
with the largest differences occurring between the Petroff
and Zhang and empirical simulations. However, these
results may be underestimated since boundary conditions
for PM2.5 for the SENEX domain did not change
between the simulations and may be modulating a larger
effect on surface concentrations that would be seen if the
domain extended over a larger area. The largest effect of
differences in Vd(Dp) algorithms in the simulations was
on PM2.5 deposition. Depending upon the choice of algo-
rithm, estimated domain mean total PM2.5 deposition dif-
fered by as much as 17% between simulations (Empirical
vs. Petroff & Zhang), while PM2.5dry deposition for indi-
vidual forested grid cells differed by >200 %.

The empirically-based simulation over the heavily for-
ested Southeast US predicted a domain mean increase in
total PM2.5 deposition of 7% and a 20% increase in total
PM2.5 deposition averaged over all forested grid cells.
Further, total (wetþ dry) sulfur deposition increased by a
maximum of 161% and a domain mean value of 7.5%,
while total nitrogen deposition increased by a maximum

Table 4. Mean bias (g ha�1) and normalised mean bias (%) for model simulation vs
CASTNet estimated PM2.5 species dry deposition from filter samples obtained June
18–25, 2013 (N¼ 15). Model depositions accumulated to correspond to the CASTNet
filter samples over the one-week time period (https://www.epa.gov/castnet).

Simulation SO4
2¼ NO3

� NH4
þ

Zhang et al. (2001) þ1.85 (þ10.7%) �0.75 (�42.3%) þ2.99 (þ52.8%)
Pleim and Ran (2011) þ6.54 (þ37.9%) �1.13 (�63.6%) þ5.15 (þ91.0%)
Petroff and Zhang (2010) �10.1 (�58.3%) �1.52 (�85.9%) �3.70 (�65.5%)
Empirical þ26.1 (þ 151%) �0.42 (�23.8%) þ7.61 (þ135%)

Table 5. Mean bias (mg m�3) and normalised mean bias (%) for model simulation vs
CASTNet PM2.5 species concentrations from filter samples obtained June 18–25, 2013
(N¼ 15). Model concentrations averaged to correspond to the CASTNet filter samples
over the 1-week time period (https://www.epa.gov/castnet).

Simulation SO4
2¼ NO3

� NH4
þ

Zhang et al. (2001) þ1.26 (þ56.0%) þ0.06 (þ27.7%) þ0.59 (þ79.5%)
Pleim and Ran (2011) þ1.27 (þ56.5%) þ0.08 (þ33.6%) þ0.60 (þ81.5%)
Petroff and Zhang (2010) þ1.45 (þ64.5%) þ0.08 (þ35.5%) þ0.67 (þ91.3%)
Empirical þ0.94 (þ41.8%) þ0.06 (þ25.5%) þ0.48 (þ65.5%)
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of 13% and a domain mean of 1.3%. These results suggest
that if field measurements of particle deposition velocities
over forests are correct, and current state-of-the-science
models underestimate accumulation mode particle depos-
ition, then model-based estimates of total deposition may
be underestimated, especially over forested landscapes in
the dry western US. This underestimation of particle
deposition and total deposition to forested landscapes
may be significant for regulations based on the critical
loads concept.

In this study, we have focussed on uncertainties in par-
ticle deposition only as a function of differences in pre-
dictions from Vd(Dp) algorithms commonly used in air
quality and atmospheric chemistry models and from dif-
ferences between the algorithms and Vd measurements
over various land use types. In fact, there are other
uncertainties inherent in particle dry deposition modelling
that are not accounted for in current state-of-the-science
air quality and atmospheric chemistry models. One of
these is the fact that most size-resolved field measure-
ments of particle deposition velocity record not only
downward fluxes of particles (i.e. deposition), but a large
fraction of the time upward fluxes (resuspension or emis-
sion) are measured as well. This phenomenon was noted
as far back as the 1980’s (Hicks et al., 1982; 1989) and is
observed routinely with more modern instruments and
technologies (e.g. Vong et al., 2010; Gordon et al., 2011)
and has been examined theoretically by Pryor et al.
(2008b). However, since in-canopy physical and chemical
processes are largely ignored by current air quality and
atmospheric chemistry models (Saylor and Hicks, 2016),
there are no mechanisms included in these models that
can produce upward particle fluxes. In these models, only
particle deposition to vegetative canopies is allowed to
occur, not in-canopy particle production and emission.
Another uncertainty in modern air quality and atmos-
pheric chemistry models relates to the fact that dry
deposition is not a spatially ergodic process, meaning that
a measurement made at one location under one set of
conditions may not necessarily be representative of
another (similar) location and set of conditions (Hicks,
1995). Since the nature of a surface on which a gas or
particle is dry depositing is often such a controlling factor
in the rate at which it deposits, simulating dry deposition
over a single multi-kilometer wide grid cell, which may in
reality be a complex patchwork of multiple land use cate-
gories, is fraught with uncertainty. How does one inter-
pret a dry deposition flux calculated for such a grid cell
as part of a total deposition estimate, when the actual
deposition to a forest-covered sensitive ecosystem in that
grid cell may be 10� or larger than a nearby plowed
field? Additional uncertainties related to the heterogeneity
of grid cell depositing surfaces are those of edge effects

(Hicks, 1995) and complex terrain (Hicks, 2008), both of
which are estimated to result in larger dry deposition
rates than are simulated by current air quality and atmos-
pheric chemistry models. In sum, the uncertainties in the
current state of dry deposition science and its modelling
clearly lead to uncertainties in the current application of
large-scale models to derive estimates of total deposition.

The results from this exercise in model sensitivity and
uncertainty cannot be definitively evaluated because of the
lack of suitable particle deposition measurements during
the simulation period, but the results strongly indicate that
more attention needs to be paid to the uncertainties identi-
fied here. Any estimates of particle dry deposition derived
from model simulations contain substantial uncertainties
and potential underestimates that will affect calculations of
total deposition for critical load assessments, and these
uncertainties will vary across land use types and local
micrometeorological conditions. New measurement tech-
nologies and the improved accuracy of older technologies
now allow the potential for the deposition measurement
and modelling communities to revisit old assumptions and
fashion new (or improved versions of the old) theories and
algorithms of the particle dry deposition process. Since
accurate predictions of atmospheric particle concentrations
and deposition are critically important for future air qual-
ity, weather and climate models and assessment and man-
agement of pollutant deposition to sensitive ecosystems, an
investment in new dry deposition measurements in conjunc-
tion with integrated modelling efforts seems not only justi-
fied but vitally necessary to advance and improve the
treatment of these processes in the models.
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